SpiNNaker
Affiliation: University of Manchester, UK
Architecture: ARM processor-based
Neuron: LIF, Izhikevich
On-Chip Learning: STDP
Platform: PyNN
Reference: Furber, S. B., Galluppi, F., Temple, S., & Plana, L. A. (2014). The spinnaker project. Proceedings of the IEEE, 102(5), 652-665.
TrueNorth
Affiliation: IBM, USA
Architecture: digital ASIC
Neuron: LIF
On-Chip Learning: N/A
Reference:
[1] Merolla, P. A., Arthur, J. V., Alvarez-Icaza, R., Cassidy, A. S., Sawada, J., Akopyan, F., ... & Brezzo, B. (2014). A million spiking-neuron integrated circuit with a scalable communication network and interface. Science, 345(6197), 668-673.
[2] Esser, S. K., Merolla, P. A., Arthur, J. V., Cassidy, A. S., Appuswamy, R., Andreopoulos, A., ... & Barch, D. R. (2016). Convolutional networks for fast, energy-efficient neuromorphic computing. 2016. Preprint on ArXiv. http://arxiv. org/abs/1603.08270. Accessed, 27.
Loihi
Affiliation: Intel, USA
Architecture: digital ASIC
On-Chip Learning: pairwise STDP, triplet STDP, reinforcement learning
Platform: Nengo
Reference: Davies, M., Srinivasa, N., Lin, T. H., Chinya, G., Cao, Y., Choday, S. H., ... & Liao, Y. (2018). Loihi: A neuromorphic manycore processor with on-chip learning. IEEE Micro, 38(1), 82-99.
BrainScaleS/HiCANN
Affiliation: Heidelberg University, Germany
Architecture: mixed-signal (analog neuron and digital communication) wafer-scale system
Neuron: adaptive exponential IF
On-Chip Learning: highly flexible learning rules
Platform: PyNN
Reference:
[1] Meier, K. (2015, December). A mixed-signal universal neuromorphic computing system. In 2015 IEEE International Electron Devices Meeting (IEDM) (pp. 4-6). IEEE.
[2] Schemmel, J., Briiderle, D., Griibl, A., Hock, M., Meier, K., & Millner, S. (2010, May). A wafer-scale neuromorphic hardware system for large-scale neural modeling. In Proceedings of 2010 IEEE International Symposium on Circuits and Systems (pp. 1947-1950). IEEE.
[3] Friedmann, S., Schemmel, J., Grübl, A., Hartel, A., Hock, M., & Meier, K. (2016). Demonstrating hybrid learning in a flexible neuromorphic hardware system. IEEE transactions on biomedical circuits and systems, 11(1), 128-142.
NeuroGrid/BrainDrop
Affiliation: Stanford University, USA
Architecture: mixed-signal ASIC
Reference: Benjamin, B. V., Gao, P., McQuinn, E., Choudhary, S., Chandrasekaran, A. R., Bussat, J. M., ... & Boahen, K. (2014). Neurogrid: A mixed-analog-digital multichip system for large-scale neural simulations. Proceedings of the IEEE, 102(5), 699-716.
DYNAP
Affiliation: Institute of Neuroinformatics (INI), University of Zurich and ETH Zurich
Architecture: mixed-signal ASIC (ultralow-power subthreshold analog neuron, digital circuit for reprogramming of connectivity, supporting for RNN and multilayer network)
Reference: Moradi, S., Qiao, N., Stefanini, F., & Indiveri, G. (2017). A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (DYNAPs). IEEE transactions on biomedical circuits and systems, 12(1), 106-122.
ODIN
Affiliation: Catholic University Louvain, Belgium
Architecture: digital ASIC
Neuron: LIF, Izhikevich
On-Chip Learning: spike-driven plasticity
Reference: Frenkel, C., Lefebvre, M., Legat, J. D., & Bol, D. (2018). A 0.086-mm $^ 2 $12.7-pJ/SOP 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28-nm CMOS. IEEE transactions on biomedical circuits and systems, 13(1), 145-158.
Reference
Rajendran, B., Sebastian, A., Schmuker, M., Srinivasa, N., & Eleftheriou, E. (2019). Low-Power Neuromorphic Hardware for Signal Processing Applications: A review of architectural and system-level design approaches. IEEE Signal Processing Magazine, 36(6), 97-110.